UNIVERSITÄT OSNABRÜCK FACHBEREICH WIRTSCHAFTSWISSENSCHAFTEN

Cover page (Klausurdeckblatt)

Exam in subject (Prüfung im Fach)	Empirical Economic Policy			
Examiner (Prüfer)	Prof. Frank Westermann, Ph.D.			
Date (Datum)	22.02.2024			

Participant (Klausurteilnehmer/in)

Course of studies (Studiengang)	
Surname, given name (Name, Vorname)	
Matriculation number (Matrikel-Nr.)	

Gained points (Erreichte Punkte)

* All tasks are to be processed * (Es sind alle Aufgaben zu bearbeiten)

Points (Punkte)							
A1	A1 A2 A3 A4 A5						

Grading (Benotung)

Total score (Gesamtpunktzahl)	
Grade (Modulnote)	
Examiner signature (Prüferunterschrift)	

Chair of International Economic Policy Prof. Frank Westermann, Ph.D.

Exam "Empirical Economic Policy"

Winter term 2023/24

Total points: 60 points

For all questions: Please label all graphs and provide definitions for all variables (graphs and formulas)!

Please also use the reverse side for the solution!

Question 1: GDP forecast (5 points)

a) Assume you are in March 2020 and want to use ARIMA modelling to forecast quarterly GDP for the rest of 2020. Given COVID-19 recession, which bias in your forecast can you expect (over-, or under-estimation)? (2 points)

b) Explain the weakness of Box-Jenkins procedure that can cause problems while doing forecast before major economic events. (3 points)

Question 2: Monetary policy (14 points)

You want to study the reaction function of the US FED before the Great Recession. For this purposes, you look at the sample 1978 and 2008.

a) You start with a Granger causality test for a nominal interest rate and a cyclical component of GDP. Write down the testing procedure formally, including the regression specification(s) and null hypothesis. (6 points)

b) Next, you estimate a 3-variable structural VAR model for interest rate, inflation and output gap. As a researcher you believe that prices are sticky and do not adjust to shocks immediately. How would you order variables for a Cholesky decomposition? Explain motivation behind the ordering of interest rate (5 points)

c) Interpret the following impulse response function. Which conclusion can you make about mandate of the FED? (3 points)

Question 3: Long-term economic policy (14 points)

a) Neoclasical and new growth theory have different implications about economic growth. Name a key difference in the production function (2 points)

b) Using a graph with capital on x-axis and capital growth of y-axis, show visually and explain verbally the convergence hypothesis in the neoclassical growth model (4 points)

c) Imagine that Switzerland considers to invest in R&D to get a lead in technology and output per capita vis-à-vis the European Union. Interpret the following output while testing convergence in GDP per capita, by stating the null hypothesis and whether you accept/reject it. Do the three countries follow the same stochastic trend? What is the implication for the intended effects of R&D policy? (6 points)

	Johansen Cointegrat	tion Test
Date: 02/01/24	Time: 18:45	
Sample: 1860	2018	
ncluded obse	vations: 159	
.ags interval (n first differences): 1 to 1	
Endogenous v	riables: GERMANY FRANCE SW	ITZERLAND
Deterministic	ssumptions: Case 3 (Johansen-	Hendry-Juselius): Cointegrating
relationsh	p includes a constant. Short-run o	dynamics include a constant.

Rank Tests

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.** Critical Value
None *	0.283339	60.04060	29.79707	0.0000
At most 1	0.046097	7.735599	15.49471	0.4941
At most 2	0.002076	0.326214	3.841465	0.5679
Frace test indica denotes rejecti MacKinnon-Ha	ites 1 cointegrati on of the hypothe aug-Michelis (199 ntegration Rank	ng equation(s) a esis at the 0.05 99) p-values Fest (Max-eigen	at the 0.05 level level value)	
Frace test indica denotes rejecti *MacKinnon-Ha Inrestricted Coir Hypothesized	tes 1 cointegrati on of the hypothe aug-Michelis (199 ntegration Rank 1	ng equation(s) a esis at the 0.05 99) p-values Test (Max-eigen Max-Eigen	at the 0.05 level evel value) 0.05	Prob.**
Frace test indica i denotes rejecti *MacKinnon-Ha Inrestricted Coir Hypothesized No. of CE(s)	tes 1 cointegratii on of the hypothe aug-Michelis (199 ntegration Rank 1 Eigenvalue	ng equation(s) a ssis at the 0.05 99) p-values Fest (Max-eigen Statistic	at the 0.05 level evel value) 0.05 Critical Value	Prob.** Critical Value
Frace test indica denotes rejecti *MacKinnon-Ha Inrestricted Coir Hypothesized No. of CE(s) None *	tes 1 cointegratii on of the hypothe aug-Michelis (199 ntegration Rank 1 Eigenvalue 0.283339	ng equation(s) a ssis at the 0.05 i 09) p-values Test (Max-eigen Max-Eigen Statistic 52.30500	at the 0.05 level evel value) 0.05 Critical Value 21.13162	Prob.** Critical Value 0.0000
Frace test indica denotes rejecti *MacKinnon-Ha Inrestricted Coir Hypothesized No. of CE(s) None * At most 1	tes 1 cointegratii on of the hypothe aug-Michelis (199 ntegration Rank Eigenvalue 0.283339 0.046097	ng equation(s) a esis at the 0.05 09) p-values Test (Max-eigen Max-Eigen Statistic 52.30500 7.409385	at the 0.05 level evel value) 0.05 Critical Value 21.13162 14.26460	Prob.** Critical Value 0.0000 0.4419

* denotes rejection of the hypothesis at the 0.05 level

**MacKinnon-Haug-Michelis (1999) p-values

d) Formally state the definition of convergence that we have applied in (c). (2 points)

Question 4: Public debt (16 points)

a) Below you can see a correlogram for annual primary deficits of Greece. Explain which process is underlying this correlogram and why. Formally write down the equation of this process (4 points)

Date: 02/01/24 Time Sample (adjusted): 1 Included observation Autocorrelation	e: 14:32 1948 2009 Is: 62 after adjustments Partial Correlation	S	AC	PAC	Q-Stat	Prob
		1	0 748	0 748	36 350	0.000
		2	0 486	-0 164	51 995	0.000
		3	0.317	0.038	58 752	0.000
	ן יוֹםי ו	4	0.180	-0.070	60.973	0.000
1 1		5	0.091	0.008	61.550	0.000
1 1		6	-0.011	-0.126	61.559	0.000
i di i		7	-0.079	-0.002	62.013	0.000
	101	8	-0.125	-0.060	63.168	0.000
	1 1 1	9	-0.168	-0.055	65.278	0.000
		10	-0.207	-0.079	68.558	0.000
		11	-0.208	0.018	71.925	0.000
		12	-0.185	-0.019	74.637	0.000
		13	-0.183	-0.072	77.341	0.000
1 🗖 1		14	-0.131	0.086	78.758	0.000
		15	-0.122	-0.125	80.024	0.000
I 🖸 I	I 🗐 I 🔶	16	-0.074	0.109	80.497	0.000
1 🛛 1	ן יםי ן	17	-0.037	-0.073	80.615	0.000
	I I 🖬 I I	18	0.010	0.100	80.624	0.000
1 D 1	I [I	19	0.059	-0.031	80.941	0.000
1 D 1		20	0.071	0.010	81.420	0.000
1 j 1	ן יםי ו	21	0.026	-0.153	81.483	0.000
1 🛛 1	ן יני ן	22	-0.042	-0.044	81.660	0.000
1 1	ן ים ו	23	-0.002	0.165	81.660	0.000
1 1 1	ן יםי	24	0.010	-0.107	81.671	0.000
111		25	-0.017	-0.016	81.702	0.000
1 j 1	' =' :	26	0.026	0.128	81.779	0.000
1 1	ן יםי ן	27	0.015	-0.098	81.804	0.000
1 ()	ן יוםי ן:	28	-0.029	-0.112	81.901	0.000

b) Using your answer from (a), derive the equation for the ADF test. What are the null and alternative hypotheses for this test? (5 points)

c) Interpret the following ADF test for primary surpluses of Greece. Is debt sustainable according to Bohn (1998) model and why? (4 points)

Null Hypothesis: SUPLUS_GR has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fu	ller test statistic	-2.219538	0.2017
Test critical values:	1% level	-3.542097	
	5% level	-2.910019	
	10% level	-2.592645	

*MacKinnon (1996) one-sided p-values.

e) Which methodological weakness of a unit-root test procedure can lead to a wrong conclusion in this case? Explain verbally. (3 points)

Question 5: Climate policy (11 points)

The following chart shows evolution in nominal crude oil prices and crude oil production between 1980 and 2019. For comparability, prices and quantities are shown as indices with both equal to 100 in January 1980.

a) Which conclusion can we make about price elasticity of oil supply, based on the first visual inspection? (2 points)

b) Draw demand curves for an oil market with two country groups ("green" and "not green"). Clearly name the axes and curves, and mark the equilibrium price and quantity. (5 points)

c) Assume that the "green" region implements the policies to reduce demand for oil. Verbally explain which implications for equilibrium price, demand of each region and global supply this policy has. (4 points)

The Chair of International Economic Policy wishes you best success!

Please sign the exam on the last page before handing it in.